PPARγ ligands inhibit telomerase activity and hTERT expression through modulation of the Myc/Mad/Max network in colon cancer cells
نویسندگان
چکیده
In human cells the length of telomeres depends on telomerase activity. This activity and the expression of the catalytic subunit of human telomerase reverse transcriptase (hTERT) is strongly up-regulated in most human cancers. hTERT expression is regulated by different transcription factors, such as c-Myc, Mad1 and Sp1. In this study, we demonstrated that 15d-PG J2 and rosiglitazone (an endogenous and synthetic peroxisome proliferators activated receptor gamma (PPARgamma) ligand, respectively) inhibited hTERT expression and telomerase activity in CaCo-2 colon cancer cells. Moreover, both ligands inhibited c-Myc protein expression and its E-box DNA binding activity. Additionally, Mad1 protein expression and its E-box DNA binding activity were strongly increased by 15d-PG J2 and, to a lesser extent, by rosiglitazone. Sp1 transcription factor expression and its GC-box DNA binding activity were not affected by both PPARgamma ligands. Results obtained by transient transfection of CaCo-2 cells with pmaxFP-Green-PRL plasmid constructs containing the functional hTERT core promoter (including one E-box and five GC-boxes) and its E-box deleted sequences, cloned upstream of the green fluorescent protein reporter gene, demonstrated that 15d-PG J2, and with minor effectiveness, rosiglitazone, strongly reduced hTERT core promoter activity. E-boxes for Myc/Mad/Max binding showed a higher activity than GC-boxes for Sp1. By using GW9662, an antagonist of PPARgamma, we demonstrated that the effects of 15d-PG J2 are completely PPARgamma independent, whereas the effects of rosiglitazone on hTERT expression seem to be partially PPARgamma independent. The regulation of hTERT expression by 15d-PG J2 and rosiglitazone, through the modulation of the Myc/Max/Mad1 network, may represent a new mechanism of action of these substances in inhibiting cell proliferation.
منابع مشابه
siRNA directed against c-Myc inhibits proliferation and downregulates human telomerase reverse transcriptase in human colon cancer Colo 320 cells
The c-Myc and human telomerase reverse transcriptase gene (hTERT) gene are frequently deregulated and overexpressed in malignancy. hTERT activity is induced by c-Myc and strategies designed to inhibit c-Myc expression in cancer cells may have considerable therapeutic value. We designed and used a short hairpin RNA to inhibit c-Myc expression in Colo 320 cells and validated its effect on cell pr...
متن کاملSp1 cooperates with c-Myc to activate transcription of the human telomerase reverse transcriptase gene (hTERT).
Telomerase activation is thought to be a critical step in cellular immortalization and carcinogenesis. The human telomerase catalytic subunit (hTERT) is a rate limiting determinant of the enzymatic activity of human telomerase. In the previous study, we identified the proximal 181 bp core promoter responsible for transcriptional activity of the hTERT gene. To identify the regulatory factors of ...
متن کاملExpression Pattern of Alternative Splicing Variants of Human Telomerase Reverse Transcriptase (hTERT) in Cancer Cell Lines Was not Associated with the Origin of the Cells
Telomerase and systems controlling their activity have been of great attention. There are controversies regarding the role of the alternative splicing forms of the human telomerase reverse transcriptase (hTERT), the catalytic subunit of telomerase. Therefore, the correlation between telomerase enzyme activity, the abundance of alternatively spliced variants of hTERT and doubling time of a seri...
متن کاملDirect HPV E6/Myc interactions induce histone modifications, Pol II phosphorylation, and hTERT promoter activation
Human Papillomavirus Viruses (HPVs) are associated with the majority of human cervical and anal cancers and 10-30% of head and neck squamous carcinomas. E6 oncoprotein from high risk HPVs interacts with the p53 tumor suppressor protein to facilitate its degradation and increases telomerase activity for extending the life span of host cells. We published previously that the Myc cellular transcri...
متن کاملDynamic Telomerase Gene Suppression via Network Effects of GSK3 Inhibition
BACKGROUND Telomerase controls telomere homeostasis and cell immortality and is a promising anti-cancer target, but few small molecule telomerase inhibitors have been developed. Reactivated transcription of the catalytic subunit hTERT in cancer cells controls telomerase expression. Better understanding of upstream pathways is critical for effective anti-telomerase therapeutics and may reveal ne...
متن کامل